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The instability of a falling liquid film of an aqueous surfactant solution along a vertical slope with surfactant
adsorption-desorption at its open surface originating surface stresses(Marangoni effect) is investigated. The
diffusion of surfactant to the film surface from the bulk and desorption of surfactant to the gas phase are taken
into account. The Navier-Stokes and Fick equations are reduced to a system of simpler hence, analytically and
numerically, more tractable nonlinear evolution equations albeit with nine dimensionless parameters. The linear
stability analysis yields a dispersion equation that is numerically solved and eigenvalues are obtained for
various values of significant dimensionless parameters. A very rich picture of instabilities appears. In addition
to the earlier known(Kapitza) hydrodynamic mode there are up to four new(Marangoni-driven) diffusion
modes. Two modes travel with the liquid velocity on the film surface and the other two travel on their own
downstream and upstream, respectively. One diffusion mode could be identified, in the reference frame moving
with the liquid on the film surface, as a monotonic instability mode hence leading to a patterned film surface.
All other modes are oscillatory ones. Resonance of modes is also predicted for suitable combinations of the
parameters of the problem. The mode observed depends upon the surface stress(in terms of a dimensionless
Marangoni number), the particular choice of the adsorption-desorption kinetics, and the surface tension state
equation at the open surface of the film.
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I. INTRODUCTION

Surface tension gradients due to mass or heat transfer
along or across a liquid-gas or a liquid-liquid interface gen-
erate surface stresses(thermocapillary or solutocapillary Ma-
rangoni effect) that either create flow, alter an existing one,
or trigger instability eventually leading to flow motions,
steady or otherwise[1–38]. Most publications dealing with
the role of the Marangoni effect in hydrodynamic problems
have been devoted to study the instability of initially motion-
less liquid layers or drops under conditions of stationary
heating or mass diffusion. Here we shall consider the prob-
lem that arises when the Marangoni effect influences the hy-
drodynamic modes in an already existing flow in a vertically
falling liquid film with deformable open outer surface. Thus
we consider the surface tension gradient-driven extension of
the problem long ago experimentally studied by the Kapitzas
[39,40] with theory provided by Shkadov[41,42]; see also
Refs. [43–62]. We confine our analysis only to the solutal
Marangoni effect, when there is mass transfer of a surface
active solute(hereafter called surfactant) in the vertically
falling film. Sternling and Scriven[2] pointed out the impor-
tance of the solutal Marangoni effect in determining whether
and under what conditions instabilities may develop at the
interface separating two fluids of different material and trans-
port properties(see also Refs.[16,17,20]). On the other hand
the stabilizing effect of surfactants on growing waves in fall-
ing films has been observed in experiments and predicted by
theory [3,5,8,63].

A theoretical analysis of the stabilizing effect of soluble
and insoluble surfactants on growing waves in falling films

has been carried out by Lin[8]. More recently the eigenval-
ues of the stability problem for vertical film flows with dif-
fusion and evaporation of surfactant(in fact desorption of
surfactant from liquid to the gas phase) was done by Ji and
Setterwall [24]. These authors found in addition to the
(Kapitza) hydrodynamic mode a weak diffusion instability
mode. This analysis was extended to the flow with mass and
heat transfer in a later publication[28]. A similar problem
concerning the thermocapillary instability of a flowing film
down an inclined plane was investigated for small wave
numbers by Lin[11]. Kelly, Davis, and Goussis[14] and
Goussis and Kelly[18] extended the theory to account for
finite wave numbers. They obtained two thermocapillary
(diffusion) modes of instability in addition to the hydrody-
namic mode. Here we further extend their linear stability
analysis to account for surfactant adsorption-desorption. As
already shown by Ji and Setterwall[24] the stability analysis
of the falling film implies several parameters even for very
slow adsorption and desorption processes. Thus it is a very
complicated task to obtain the full spectrum of eigenvalues.
To avoid this difficulty we shall make use of a method intro-
duced in Refs.[41,42] that has been shown useful in a vari-
ety of problems[33,64–71]. This method reduces the prob-
lem to a system of time-dependent one-dimensional
differential equations and it allows to study instability for
small and moderately large wave numbers. Palmer and Berg
[10] have analyzed a rather general case of mass transfer at
an interface(see also Ref.[19]). The following quantities
were introduced: bulk concentration of a surface active sol-
ute (surfactant), csx,y,td, bulk concentration in the fluid su-
blayer (macroscopically near the interface), c̄sx,td, surface
excess concentration in the adsorbed layer on the interface,
Gsx,td, and mass flux of surfactant from the bulk liquid to the*Electronic address: velarde@fluidos.pluri.ucm.es
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interface, jsx,td. At the quasisteady state these quantities
were assumed to be connected by the following adsorption-
desorption kinetics:

c̄ − kdG = j , s1d

where only linear adsorption and desorption processes with
rate constantska andkd are considered. There are two limit-
ing cases: fast and slow adsorption-desorption kinetics. For
fast enough kinetics a local adsorption-desorption equilib-
rium could be introduced. As it follows from Eq.(1), equi-
librium in the system with adsorption-desorption corre-
sponds to j =0. There is local equilibrium of the surface
excess solute with the solute in the adjacent subphase and
hence the(local) equilibrium values ofc̄ andG are connected
by the relation

G = kakd
-1c̄ s2d

which formally corresponds to the(ideal) Gibbs adsorption
isotherm for very dilute solutions.

Deviations from equilibrium of the system with surfactant
may be due to various reasons, namely, initial nonequilib-
rium conditions, intense adsorption and desorption of surfac-
tant, chemical reaction at the interface, etc. With diffusion to
the interface we havej Þ0 [19,72]. The mass transfer pro-
cess is determined by the values ofka,kd, c̄, andG. If every
term on the left-hand side(lhs) of Eq. (1) exceeds greatly the
diffusion flux j , then the mass transfer process could be
treated as locally in equilibrium(then j is a small difference
between two large values on the lhs). In this case, the rela-
tion (2) at local equilibrium betweenc̄ and G, which are
functions of space and time, is fulfilled and the adsorption
and desorption processes are controlled by bulk diffusion.

For simple surfactant molecules and moderately dense so-
lutions the Langmuir adsorption isotherm is

G = G` c̄

a + c̄
s3d

and the corresponding equation of state for the surface ten-
sion is the Szyszkowsky equation

s − s0 = − RTG` lnS1 +
c̄

a
D , s4d

where G` corresponds to a complete coverage, the surface
excess saturation or maximum realizable of surface excess
concentration, anda is constant for a given surfactant(ad-
sorption coefficient) [19]. From Eq.(4) follows the relation

G = S−
1

RT

ds

dc̄
Dc̄. s5d

Note that for small deviations from an initial equilibrium
state

−
1

RT

ds

dc̄
; L = const.

Then Eq.(5) takes the form of the Gibbs equation(2),

G = Lc̄. s6d

For a more general adsorption-desorption kinetics one
needs to apply the nonequilibrium relation(1) with, e.g., the
equilibrium Langmuir adsorption isotherm(3). Alternatively
one could use nonlinear kinetics rather than Eq.(1). For in-
stance, Boyadjiev and Beschkov[73] have used the relation

kaS1 −
G

G`Dc̄ − kdG = j . s7d

More general forms of nonlinear relations have been dis-
cussed in the literature[27,74] but we shall not use them
here in view of the additional complexity they add to the
already very complex problem we have with many param-
eters involved.

The local equilibrium linear approximation(2) for sys-
tems with surfactants has been widely exploited to investi-
gate various nonequilibrium mass transfer problems. Ward
and Tardai[75] have investigated the time-dependent prob-
lem for one-dimensional solutal systems, with nonequilib-
rium adsorption-desorption caused by the initial condition
G=0. They used the Langmuir isotherm(3) to close the
mathematical formulation. However, deviations from the lo-
cal equilibrium conditions for smallG values could be sig-
nificant. Nonequilibrium conditions also arise at the initial
parts of the falling film or for the jet flowing out of the
orifice. The surface excess concentrationG increases from
the initial valueG=0 as the distance from the flow orifice
grows. Defay and Petre[76], Balbaertet al. [77], and Bechtel
et al. [78] have used one-dimensional unsteady formulations
together with the time-space analogy to obtain the dynamic
surface tension theoretically for these flows and to compare
theoretical results with experiments. In an initially motion-
less liquid layer the deviations from equilibrium are con-
nected with desorption to air or adsorption of surfactant on
the interface. Forj Þ0, Brian [9] investigated the hydrody-
namic instability of a motionless layer of solute under the
assumption of local equilibrium(2). He only considered
small deviations from the initial equilibrium state(see also
Refs.[25,26]).

The second limiting case of Palmer and Berg’s[10] analy-
sis refers to very slow adsorption and desorption processes
so thatka and kd are practically zero, andj vanishes. The
mass transfer in the sublayer near the interface is kinetically
frozen, so the surface excess concentrationG is effectively
unchanged, hence

G ; G0 = const. s8d

Ji and Setterwall[24,28] have applied Eq.(8) to study the
stability of a falling film of solute with the Marangoni effect.
They computedG0 using Eq.(2), although this relation in
fact corresponds to the case of fast adsorption-desorption ki-
netics.

Besides the simplification in the solution procedure both
approximations(2) and (8) have the advantage that the Ma-
rangoni stress calculations are made simpler as the functional
dependences=ssc̄d is appropriate for both cases. The situ-
ation is not so clear when the nonequilibrium adsorption-
desorption kinetics is governed by Eq.(1) or Eq.(7). There is
the choice between one of the three possibilities:ssc̄d, ssGd,
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or ssc̄,Gd. The latter case is the general one and, formally,
solves the difficulty, but due to lack of experimental data this
relationship is not so useful. The first two possibilities have
been used in most publications. Palmer and Berg[10] used
the relationssc̄d in most of their computations, although they
started consideringssGd. Hennenberget al. [20] usedssGd
in their discussion of the stability of a motionless horizontal
liquid layer with surfactant adsorption barrier. Ryabitzkiy
[29] has also done a similar study. Feinermannet al. [79]
investigated the complicated problem of filling the adsorbed
layer with molecular chains of two types. They had to intro-
duce two surface excess concentrationsG1 and G2. At the
same time the dependencessc̄d was considered to compare
theoretical and experimental results. In view of all these ear-
lier studies here both functional possibilities or surface equa-
tions of state,s=sc̄d andssGd, are considered separately one
after the other, and results are compared at the end.

In Sec. II we state the mathematical problem. Sections III
and IV are devoted to a description of the reduced evolution
and stability problems, respectively. In Sec. V we present the
results obtained and we discuss the various unstable modes
found for positive and negative values of the Marangoni
number, and two different adsorption-desorption kinetics and
surface tension equations of state. In Sec. VI we provide a
summary of results and conclusions.

II. MATHEMATICAL FORMULATION

We consider a falling liquid(e.g., an aqueous solution)
with flow and diffusion connected together by the
adsorption-desorption of surfactant on the open deformable
surface.

Let x,y,z be the orthogonal coordinate system with origin
located on the rigid solid wall. The axisx is directed along
the wall, positive down in the direction of gravity. The film
flow of the aqueous solution is described by the Navier-
Stokes equations, and for the bulk concentration of surfac-
tant,c, we use Fick’s equation

] u

] x
+

] v
] y

= 0,

dv
dt

= −
1

r

] p

] y
+ n n v,

du

dt
= −

1

r

] p

] x
+ n n u + g,

dc

dt
= D n c s9d

together with the following boundary conditions on the rigid
wall,

y = 0, u = 0, v = 0,
] c

] y
= 0, s10d

and on the film open surface

y = hsx,td,
] h

] t
+ u

] h

] x
= v,

p = pa + 2m
1

b2Fs1 − b2d
] v
] y

−
] h

] x
S ] v

] x
+

] u

] y
DG − s

1

b3

]2h

] x2 ,

ms1 − b2dS ] u

] y
+

] v
] x

D + 2mS ] v
] y

−
] u

] x
D ] h

] x
− b

] s

] x
= 0,

s11d

] G

] t
+

1

b

]

] x
FG

b
Su + v

] h

] x
DG − Ds

1

b

]

] x
S1

b

] G

] x
D +

kg

m
c̄ = j ,

j = − D
1

b
S ] c

] y
−

] h

] x

] c

] x
D ,

b = F1 +S ] h

] x
D2G1/2

. s12d

Note that in Eq.(9) d/dt is the material derivative.D denotes
here the Laplacian. In view of the long wavelength approxi-
mation to be used here a term due to the expansion of the
curved interface[80] is omitted in Eq.(12). In Eq. (11) pa
denotes the outside air or gas pressure.

In the initial section of the film a uniform distribution of
surfactant concentration is assumed,

x = x0, c = c* = const. s13d

Equations(9)–(13) have been employed by Palmer and Berg
[10] and by Hennenberget al. [20]. Equation(12) also ap-
pears in the formulation for the falling film done in Ref.[24]
with, however,G=const. The last term on the left-hand side
of Eq. (12) accounts for the desorption of the surfactant from
the liquid phase into the gas phase;kg is the gas phase mass
transfer coefficient of the surfactant,m is the ratio of the
concentration in the liquid phase to the concentration in the
gas phase at equilibrium. Two assumptions when deriving
this boundary equation are that the concentration of the sur-
factant in the gas phase far from interface is zero and that
there is equilibrium at the interface between the concentra-
tion in the gas phase and the concentration in the liquid film.
To obtains]s /]xd an equation of state fors must be speci-
fied thus leading to a closed mathematical formulation. As
already mentioned, two relationshipsssc̄d and ssGd will be
used here.

Let us consider that the surface tensions is a linear func-
tion of the bulk surfactant concentration on the free surface,
c̄sx,td,

s = s* +
ds

dc̄
sc̄ − c*d. s14d

To state the problem in dimensionless form we introduce
suitable scales and hence
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x,y,h,t → 1

n*
lx, ly, lh,

l

n*U*
t,

u,v,c,G → U*u, n*U*v,c*s1 + cd, G*s1 + Gd. s15d

Dimensional quantities stand on the left sides of Eq.(15) and
their corresponding dimensionless values are contained on
the right sides. The scalesl ,U* ,c* ,G* together with a
stretching or contracting parametern* are yet to be pre-
scribed.

After introducing Eq.(15) in Eqs. (9)–(13), the dimen-
sionless formulation of the problem yields the corresponding
equations. The following ten dimensionless parameters have
been introduced:

Re =
U* l

n
, Pe =

U* l

D
, We =

rlU*
2

s
, Fr =

U*
2

gl
,

Ma = −
ds

dc̄

c*

mU*
, G =

G*U*

c*D
, Bi =

kgl

mD
,

Di =
DsG*

Dlc*
, p1 =

kal

D
, p2 =

kdG* l

c*D
. s16d

Re,Pe,We,Fr,Ma, and Bi stand for Reynolds, Peclet, We-
ber, Froude, Marangoni, and Biot numbers(recall that here
Bi refers to mass transfer only and it plays a similar role to
the usual Bi number in heat transfer) [13,15,37,38]. G gives
an indication of the relative value of the surface excess con-
centration to the bulk concentration. Di refers to diffusion.

We shall consider film flows when the capillary forces are
of the same order as the viscous and the gravitational ones.
Let us introduce for these flows the relations

n*
2

We
=

3

n*Re
=

1

n*Fr
=

1

5d
. s17d

From Eq.(17) the three quantitiesl, n* , andd are found,

n* = g−1/3s3 Red2/9, d =
1

45
g−1/3s3 Red11/9,

g =
s

r
sn4gd−1/3, l = S3n2

g
D1/3

Re1/3. s18d

The parametern* which plays a crucial role in the proce-
dure of simplification of the Navier-Stokes and Fick equa-
tions, Eqs.(9)–(12), can be expressed in terms of the capil-
lary or crispation number Ca,

Ca =
mU*

s
=

We

Re
s19d

and thusn* =s3 Cad1/3. The relevance of the above intro-
duced quantities and approximations can be seen by consid-
ering a water filmg=2850 for a sequence of Re values. The
conditionsn*

2!1 andn*
2We−1,1 are fulfilled for Re values,

30.Re.5, or for d values, 0.4.d.0.043. Noteworthy is
that the Kapitzas in their pioneering experiments on wavy

film flows worked precisely in such interval of Re numbers
[40].

To investigate the multiparameter problem Eqs.(9)–(13)
let us make use of a simplifying method[41,42]. Let us also,
as already noted, consider thatn*

2!1. For wavy motions this
condition means that the wavelength is larger than the film
thickness. Thus for a wave numbera we have the condition
n*aø1. We intend now to omit those terms in Eqs.(9)–(13),
which have an orderosn*

2d and which are negligible for
n*

2!1. For example, from Eq.(12) it follows b=s1
+n*

2hx
2d1/2, wherehx=os1d in accordance with the choice of

the factor n* . Then the cumbersome boundary conditions
(11) and (12) could be simplified by takingb=1 to order
osn*

2d. At the same time we retain the productsn*Re, n*Ma,
n*Fr, n*

2We−1, andn*
2Di, which could have order unity or

even higher, i.e., of the order ofn*Pe andn*G in accordance
with the magnitudes of the full dimensionless parameters.
Thus we can consider values ofG, Re, Pe, Ma, Fr, We, and
Di in a broad range.

After omitting all terms in Eqs.(9)–(12) of ordern*
2, the

boundary layer approximation, with self-induced pressure, is
obtained. Such an approximation includes hydrodynamic and
diffusion parts which are connected by the Marangoni stress
due to the boundary condition for tangential forces in Eq.
(11),

] u

] t
+ u

] u

] x
+ v

] u

] y
= −

] p

] x
+

1

n*Re

]2u

] y2 +
1

n*Fr
,

] p

] y
= 0,

] u

] x
+

] v
] y

= 0, s20d

] c

] t
+ u

] c

] x
+ v

] c

] y
=

1

n*Pe

]2c

] y2 ,

y = hsx,td,
] h

] t
+ u

] h

] x
= v, s21d

p = −
n*

2

We
S1 −

MaWe

Re
c̄D ]2h

] x2 ,

] u

] y
= − n*Ma

] c̄

] x
, s22d

] c

] y
+ Bis1 + c̄d + n*GS ] G

] t
+

] us1 + Gd
] x

D − n*
2Di

]2G

] x2 = 0,

−
] c

] y
= p1s1 + c̄d − p2s1 + Gd s23d

together with the boundary conditions(10) and initial condi-
tions
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x = 0, h = 1, c = 0.

If rather the relations=ssGd instead ofs=ssc̄d is consid-
ered then in Eq.(22) the term Ma1Gx appears instead of Mac̄x
with Ma1=−sds /dGdsG* /mU*d.

From Eqs.(17) and (19) we obtain

Ma
We

Re
=

1

3
n*

3Ma.

For n*
2!1 this product is small, of orderosn*

2d for Ma
ø10. Thus MasWe/Red in Eq. (22) could be omitted for all
d values under consideration. Due to Eq.(17) only the pa-
rameterd enters the formulation Eqs.(20)–(23) instead of
Re,Fr, and We. Then the formulation given applies for any
liquid providedg@1.

III. THE REDUCED EVOLUTION EQUATIONS

To investigate the solutions of the differential equations
with boundary and initial conditions, Eqs.(20)–(23), the
Galerkin method is applied in coordinatey. For the spectral
representation of the unknown functions a system of polyno-
mials is used as a basis set. For the coefficients of spectral
representations which are functions ofx and t, a system of
one-dimensional time-dependent differential equations fol-
lows from the Galerkin method. Direct numerical integration
of the initial problem[Eqs. (20)–(23)] for Ma=0 by De-
mekhinet al. [69] and experimental measurements by Alek-
seenkoet al. [54] have shown that the velocity profile in
coordinatey for the wavy film flow could be approximated
by the simplest polynomial satisfying the boundary condi-
tions. Thus for the spectral representation ofu it is enough to
take into account only the first term. Here we take advantage
of their results and use them, as a working approximation,
also for velocity profiles in wavy film flows with concentra-
tion profilesc, when MaÞ0.

The small parameter«=sn*Ped−1/2 in Eq. (21) estimates
the diffusion boundary layer near the outer open surface of
the liquid film. Let us introduce the stretched coordinate near
the surfacey=hsx,td,

y = h − «z. s24d

For the concentration fieldcsx,y,td inside the diffusion
boundary layer the following boundary conditions can be
used:

z = 0, c = c̄sx,td,

z = Dsx,td, c = 0,
] c

] z
= 0. s25d

The simplest polynomial representation ofcsx,y,td which
satisfies the boundary conditions(25) is

c = c̄S1 −
z

D
D2

. s26d

Note that in Eq.(25), Dsx,td accounts for the thickness of the
diffusion boundary layer, hence from Eqs.(24) and(25) fol-
lows c=0 for h−«D.y.0.

The velocity fieldusx,y,td is assumed to be represented
according to boundary conditions(10) and (22) as follows:

u = ūs2h − h2d + Mhsh − h2dc̄x, y = hh, c̄x =
] c̄

] x
,

s27d

where we have rescaled the Marangoni number,M =n*Ma.
By inserting Eqs.(26) and (27) in Eqs.(20) and by inte-

grating the resulting expressions fromy=0 to y=h, the equa-

tions for h, ū, c̄, Ḡ , andD as functions ofsx,td are ob-
tained. With the help of Eq.(17) we have

] h

] t
+

] q

] x
= 0,

] q

] t
+

] Q

] x
=

1

5d
Sh

]3h

] x3 + h −
2

3h
sū + Mh c̄xdD ,

] w

] t
+

]

] x
fsAū+ BMh c̄xdwg = 2

c̄

D
,

n*GS ] G

] t
+

]

] x
sūGd +

] ū

] x
− n*

2Di
]2G

] x2D + Bis1 + c̄d = − 2
c̄

«D
,

p1s1 + c̄d − p2s1 + Gd = − 2
c̄

«D
, s28d

where

q =E
0

h

udy=
2

3
ūh +

1

6
Mh2c̄x,

Q =E
0

h

u2dy=
8

15
ū2h +

7

30
Mh2ūc̄x +

1

30
hsMh c̄xd2,

w =E
0

D

cdz =
1

3
c̄D s29d

with

A = 1 −
1

10
Sh1

h
D2

, B =
1

4

h1

h
−

1

10
Sh1

h
D2

h1 = «D.

In what follows we shall take approximate values

A = 1, B =
1

4

h1

h

and for the thickness of the diffusion boundary layer
sh1/hd!1. The system of equations(28) and (29) must be
solved with the initial conditions

x = 0, c̄ = 0, G = 0, w = 0, D = 0. s30d

The first two conditions(30) together with Eq.(13) imply
that the dimensional quantitiesc̄ andG at the pointx=0 are
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taken as reference values,c* = c̄s0,td andG* =Gs0,td, respec-
tively.

In the system(28) for surface tension, gravity, and viscous
forces stand the termshhxxx,h,−s2/3 hdsū+Mh c̄xd, respec-
tively. As expected, for Ma=0, Eqs.(28) reduce to the origi-
nal result obtained in Refs.[41,42] for wavy film flows in the
absence of surfactants. ForMhc̄x=t, wheret is prescribed,
we recover the equations derived by Esmail and Shkadov
[81]. Most of the Kapitzas[39,40] experiments and more
recent experimental observations on regular wave film flows
have been explained theoretically on the basis of periodic
solutions of the nonlinear system(28) for Ma=0. A detailed
comparison of theory and experiments concerning wavy
films has been recently provided by Shkadov and Sisoev
[71].

The base state of the flow with surfactant mass transfer is
expressed by the stationary solution of Eq.(28),

h0 = 1, ū0 =
3

2
, c̄0, G0. s31d

Using the stretched variables,x1=«2x and w1=«w, the sys-
tem (28) becomes

ū
] w1

] x1
−

1

2
«2M

]

] x1
S c̄w1

s
c̄xD = − s,

s= Bis1 + c̄d + «2n*Gū
] G

] x1
− «4n*

2Di
]2G

] x1
2 ,

s= p1s1 + c̄d − p2s1 + Gd,

w = −
2

3

c̄2

s
. s32d

Neglecting the terms of order«2, from Eq.(32) follows that

d

dx1
S c̄2

1 + c̄
D = Bi2s1 + c̄d,

p1s1 + c̄d − p2s1 + Gd = Bis1 + c̄d,

s= Bis1 + c̄d. s33d

The differential equation(33) with the initial condition(30)
has a solution in closed form,

lns1 + c̄d +
1

2
S 1

1 + c̄
D2

=
1

2
+ Bix1. s34d

From the second equation, Eq.(33), we obtain

p1 − p2 = Bi, G = c̄. s35d

Now the concentrationsc̄ and G for the stationary diffu-
sion conditions can be calculated from Eqs.(34) and(35) for
everyx1 value, if the value of the parameter Bi is specified.
From Eq.(33) follows that the desorption of surfactant to the
gas phase is the only reason for the adsorption-desorption to
deviate from the equilibrium state corresponding to Bi=0.

Thus we deal with the evolution and subsequent effects of
the surfactant transfer from the equilibrium conditions at the
initial sectionx=0. To estimate the accuracy of the approxi-
mate solution(34), comparison of Eq.(34) with the exact
solution of the stationary diffusion problem given by Ji and
Setterwall [24] can be done. For Pe=106,Bi=10, and c̄0
=−0.25 the exact solution givesx=1000l andh1=0.09[h1 is
obtained only approximately from the graphical dependence
csyd]. The appropriate values from Eq.(34) arex=1012l and
h1=0.0666.

IV. STABILITY ANALYSIS

Let us now consider the response of the base state to
infinitesimal disturbances. The base state corresponds to the
diffusion boundary layer near the surface of the falling film.
The linear or nonlinear behavior of the aqueous solution film
with surfactant desorption to air is described by the Eqs.
(28). For the base state we take Eqs.(31), (34), and (35)
combined with

c̄0 = c̄s«2x0d, G0 = c̄s«2x0d,

s0 = Bis1 + c̄0d, w0 =
2

3

c̄0
2

s0
. s36d

For the hydrodynamic stability analysis the base states
(31) and (36) are assumed to have nox dependence as
c̄s«2x0d is a slowly varying function and hencex enters in Eq.
(36) as a parameter.

Thus we assume thatc̄0=const,G0=const and then we
proceed to investigate the stability of the base state(31) to
infinitesimal disturbances. The stability analysis must be re-
peated for various sectionsx=x0 asx grows from the initial
sectionx=0. Thus we now introduce

ū = ū0 + u8, h = 1 +h8, c̄ = c̄0 + c8, G = G0 + G8,

s= s0 + s8, w = w0 + w8. s37d

After linearizing Eq.(28) the equations for disturbances(37)
are

] h8

] t
+

] q8

] x
= 0,

5dS ] q8

] t
+

] Q8

] x
D =

]3h8

] x3 + 2h8 −
2

3
u8 −

2

3
Mcx8,

] w8

] t
+ ū0

] w8

] x
+ w0

] u8

] x
−

1

2
M

c̄0w0

s0

]2c8

] x2 = − s8,

1

«
s8 = Bic8 + n*GS ] G8

] t
+ s1 + G0d

] u8

] x
+ ū0

] G8

] x
D

− n*
2Di

]2G8

] x2 ,
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1

«
s8 = p1c8 − p2G8, s38d

where

q8 = h8 + 2
3u8 + 1

6 Mcx8,

Q8 = 6
5 h8 + 8

5ū + 7
20Mcx8.

For the solutions of Eq.(38), moving or stationary waves
periodic inx (normal modes), we consider

su8,h8,c8,G8d = sũ,h̃,c̃,G̃dexp iasx − vtd, s39d

wherev is a complex quantitysv=vr + ivid.
Using Eqs.(38) and (39) we get the following equations

for the unknown amplitudes,ũ,h̃, c̃,G̃, andw̃1:

2
3ũ + s1 − vdh̃ + 1

6zc̃= 0,

S u

b
− v +

12

5
Dũ −

3

2
S2

u

b
− a2u −

6

5
+ vDh̃

+ zS u

b
−

1

4
v +

21

40
Dc̃ = 0,

bjw̃1 − fB1
2 + M1a2s1 + c̄0dgc̃ − B1G1Sbj +

d

T
DG̃

+ bs1 − B1G1ds1 + c̄0dũ = 0,

w̃1 −
2 + c̄0

c̄0

c̃ −
G1

B1
Sbj +

d

T
DG̃ +

G1

B1
s1 + c̄0dbũ = 0,

c̃ − s1 + Tbj + ddG̃ − Tbs1 + c̄0dũ = 0. s40d

We have introduced in Eq.(40) the following quantities
u=1/5d, b= ia, andz=Mb. We also have

B1 = «VBi, G1 = «n*VG, D1 = «n*
2Di,

M1 = −
n* c̄0Ma

2Bis1 + c̄0d
, w̃ = g2w̃1,

V =Î3

2

1 + c̄0

uc̄0u
, g1 =

2 + c̄0

c̄0

g2, g2 = −
2

3

c̄0
2

Bis1 + c̄0d2 ,

T =
n*G

p2
, d = TD1a2. s41d

Let us now assume thatc̃ and ũ obey the following rela-
tionship:

where the factorR is to be obtained from the diffusion part
of Eq. (40).

As the problem is homogeneous, the existence of non-
trivial solution to Eq.(40) demands that the determinant of
this system vanishes. From this condition the dispersion
equation is obtained forj=1.5−v:

−
2

3
bj2 + S2

5
b −

2

3
uDj +

1

10
b − u +

2

3
ba2u

+ zRF−
1

6
bj2 + S 3

20
b −

2

3
uDj +

1

6
ba2uG = 0.

s42d

From Eq.(40) the relation connectingc̃ and ũ follows. The
factor R is

R =
F30 + jF31 + j2F32

C30 + jC31 + j2C32
. s43d

Inserting Eq.(43) into Eq. (42) leads to the dispersion
equation in the form of a fourth-order algebraic problem

F10 + jF11 + j2F12 + zsF20 + jF21

+ j2F22d
F30 + jF31 + j2F32

C30 + jC31 + j2C32
= 0. s44d

The dispersion equation(44) determines four eigenvalues
jk, depending on the wave numbera, and on the dimension-
less parameters Bi,G,T,Di, d ,n* , c̄0,Ma, and«.

The coefficientsF1k and F2k,k=0,1,2 in Eq.(44) are
known from Eq.(42). The coefficientsF3k and C3k for the
cases=ssc̄d are

F30 = s− B1G1 + 1 +dds1 + c̄0db,

F31 = SG1

B1
− TDs1 + c̄0da2, F32 = 0,

C30 = fB1
2 + M1s1 + c̄0da2gs1 + dd + G1B1

d

T
,

C31 = − bF2 + c̄0

c̄0

s1 + dd − fB1
2 + M1s1 + c̄0da2gT − G1B1

−
G1

B1

d

T
G ,

C32 = a2F2 + c̄0

c̄0

T −
G1

B1
G . s45d

When the Marangoni number is set to zero, Eq.(42) re-
duces to the corresponding equation for a falling film with no
Marangoni effect, as expected(see, e.g., Refs.[41,42,62]).
From Eq. (42) the instability interval is determined,
0,a,a0, with neutral curve

a0 = Î15 d s46d

and with vr =3 as wave velocity of the neutral disturbance.
Later on expecting no confusion in the reader we shall useCr
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rather thanvr to denote wave velocity. The relations(46) for
neutral disturbances together with the growth or amplifica-
tion factorsavidmax of the fastest growing disturbances have
been compared with the direct numerical solutions of the full
Navier-Stokes formulation[Eqs.(9)–(13)] and to the results
of Ref. [69] for the boundary layer with self-induced pres-
sure approximation[Eqs.(20)–(23)]. These three approaches
give practically identical results for 0,d,0.5. Such an
agreement shows the utility of the approximations used to
obtain the dispersion equation(44). Needless to say, the
above given methodology for the derivation of the evolution
equations and their spectral analysis could be extended al-
most verbatim to the instability of the film flow with heat
transfer.

Demekhinet al. [70] have shown that Eqs.(38) give a
very good approximation to the Orr-Sommerfeld formulation
of the instability problem for prescribedt and for low
enough values ofa.

V. NUMERICAL RESULTS: EIGENVALUES

Too many particular cases can be considered in view of
the dispersion equation(44) which includes nine independent
dimensionless groups. It is convenient to take the following
quantities as free parameters

Re, Ma, Pe,g, Bi, G, c̄0, T, D1. s47d

Then the values ofd andn* implicit in the coefficients of
Eq. (44) could be computed using Eq.(18). For every speci-
fied set of parameter values(47), the roots of equation can be
obtained and hence the phase velocityCrsad and the corre-
sponding growth rateavisad. If the parameter Ca is specified
instead ofg, then the value ofg could be obtained using Eqs.
(18) and (19).

Relations exist to assign numerical values to free param-
eters. For example, we have

Pe =S n

D
DRe, G =

G*

c* l
Pe.

A classification of parameters in view of their physical or
mechanical significance is useful. The main parameter con-
necting the hydrodynamic and diffusion parts of the film
flow problem with surfactant is the Marangoni number Ma.
Both cases positivesMa.0d and negativesMa,0d Ma-
rangoni numbers have been considered. Considering both
cases is not a matter of mere academic interest. Schwarz[7]
studied two-phase systems Cyclohexanol/Water with diffu-
sion substances Methanol,n-Propanol,n-Butanol,n-Amylol,
andn-Hexanol in concentrations from 2% to 8%. These sys-
tems are characterized byds /dc̄,0, Ma.0 (the first three)
and byds /dc̄.0, Ma,0 (the latter two). Other cases show-
ing positive growth in the surface tension or a minimum in
the surface tension which can be considered as anomalous
behavior,ds /dc.0 or ds /dT.0, relative to that of pure
water have been described by several authors[82–86]. For
instance, the mixture 2-butoxyethanol-water hasds /dT.0.

The most significant hydrodynamic parameters are Re and
g, or equivalentlyd and g. Their corresponding values de-

termine the mean film thicknessl, mean velocityU* , flow
rate lU* , as well as the parametern* . The diffusion param-
etersc̄0 and Pe determine the local thickness of the diffusion
boundary layer,h1, and the smallness parameter«. Two
quantitiesT andD1 characterize the mass transfer of surfac-
tant by the adsorption-desorption and the intensity of dissi-
pation by the surface diffusion. The intensity of the surfac-
tant desorption to the gas phase is determined by the
parameter Bi. Recall thatG gives an indication of the typical
value of surface excess concentrationG* relative toc* .

For every prescribed set of parameter values(47) the ei-
genvaluesvsad could be computed for arbitrarya.0 val-
ues. But we must keep in mind that the assumptions made
for the long wave approximation introduce limitations ona.
For the problem under consideration there exist indeed two
length scalesh andh1. This distinction is significant for the
understanding of our results. Indeed, due to the inequality
h1!h, short waves in theh scale could be considered as long
waves in theh1 scale. In view of this a cutoff value for
practical purposes,a,10, is used in the numerical study that
we describe below.

A few remarks about the parameterT are pertinent. Actu-
ally, the last equation(40) is the disturbed equation of the
adsorption-desorption kinetics(1). This equation containsT,
D1, andc̄0 together with the wave numbera. From Eqs.(16)
and (41) we obtain

T = n*
U*

kdl
, TD1 = n*

2 Di

kdl
2 . s48d

From Eq.(48) follows that the parameterT characterizes
the ratio of rates of the surface excess concentration,G,
transfer by two processes: one is convective flow along the
film surface, and the other is desorption inside the liquid
bulk. For T→0 the case of diffusion controlled adsorption-
desorption kinetics from Eq.(40) is obtained,

G = c̄, s49d

like Eq. (6) for the equilibrium Marangoni effect. Equation
(49) corresponds to a fast desorption process leading to local
kinetic equilibrium. In the opposite limiting situationT→`,
it follows from Eq. (40),

G̃ =
1 + c̄0

ū0 − v − bD1

ũ. s50d

Equation(50) corresponds to kinetically frozen desorption.
Only for 1+c̄0=0 it is possible to consider the surface excess

concentration of surfactant,G, as constant and henceG̃=0
for j Þ0. Besides the limiting cases of fast desorptionsT
=0d and slow desorptionsT→`d the more general caseT
,1 is also considered here. Note that the difference between
Eqs. (1) and (7) may be important only whenG0/G` is not
small. Yet the two approaches are equivalent at the linear
stability level in spite of various coefficients appearing in Eq.
(40).
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A. Constant surface excess concentrationG

First of all we have cross-checked our method to obtain
the eigenvalues given by the dispersion equation(44) by
comparing our results with the exact numerical solutions of
the Orr-Sommerfeld formulation given by Ji and Setterwall
[24] for G=const. Note that in this work we are dealing with
a more general formulation of the instability problem as we
include nonequilibrium surfactant adsorption-desorption ki-
netics. Besides, their particular case is somewhat artificial as
it does not follow from the general formulation(49) as T
→`. Furthermore, whenT→` the terms1+c̄0d in Eq. (49)

must be set to zero. ForG0=0 and G̃=0 in Eq. (40) the
coefficientsF3k andC3k in the dispersion equation(44) are

F30 = bs1 + c̄0 − B1G1d, F31 = a2G1

B1
, F32 = 0,

C30 = B1
2, C31 = −

2 + c̄0

c̄0

b, C32 = 0. s51d

The dispersion equation(44) with coefficients(51) is a third-
order algebraic equation for this case. For Ma.0 two of
three roots yield unstable modes. For illustration and com-
parison we choose the following numerical values:

Re =
40

3
, Pe =

2

3
106, Bi = 10, c̄0 = − 0.25.

This set of parameter values fits well a liquid metal with
g=29.24 and Ca=0.2. The calculations of eigenvalues have
been done for several values of Ma anda. In Fig. 1, typical
curves forCr =Crsad and avi =avisad are plotted. As the
growth rateavisad of various instability modes could differ
by several orders, a normalized growth ratef =mavisad,
wherem is the appropriate scale used in figures. One of these
growing modes(0,1,3) is easily identified as the(Kapitza)
hydrodynamic mode of the falling film with small wave
number and it is indeed the same when Ma=0. The phase
velocity Cr of this wave mode diminishes fromCr =3 asa
grows from a=0, takes a minimum value, and then in-

creases. The growth rateavi is positive in the interval
0,a,a* and has a maximum valuesavidm inside this in-
terval. Other growing modes(2,4), which are referred to as
diffusion (Marangoni-driven) modes, appear only if MaÞ0.
The term “diffusion” is applied to any mode which disap-
pears as Ma→0. Diffusion modes in the case under consid-
eration exist as solutions of the dispersion equation(44) for
high enough wave numbersa.a** , wherea** is to be de-
termined by computations. The wave velocity of a diffusion
mode is equal to 3/2 with great accuracy. Thus this wave
moves with the velocity of the liquid on the film surface.
This mode, which can be identified as a monotonic instabil-
ity mode of the liquid open surface, leads to a patterned
interface. The growth rateavi of this diffusive mode is two
to three orders below that of the hydrodynamic mode and
tends to its maximum value asa grows.

For a=1.355, the eigenvalues are

v1 = 1.313 − 0.106 00i, v2 = 1.253 − 0.112 50i ,

v1 = 0.999 + 0.000 45i, v2 = 1.000 + 0.001 67i .

The solutions of Eq.(44) are on the right side while the
solutions obtained by Ji and Setterwall[24] of the full Orr-
Sommerfeld formulation are on the left side. There is reason-
able agreement between the results obtained using the two
approaches.

The eigensolutions have been obtained for variousa and
Ma values andD1=0.01 and 0.0001. The structure of the
spectrum,vsad (Fig. 1), is valid for all values Ma.0. The
existence of hydrodynamic and diffusion Marangoni instabil-
ity modes is the main feature of that spectrum. The influence
of the surfactant and the Marangoni effect on the hydrody-
namic instability model(1,3) can be seen in Fig. 1. The
growth rate of the most unstable mode diminishes with Ma
increasing.

If d is small enough and Ma is sufficiently high the dif-
fusion mode grows faster than the hydrodynamic mode
grows. The critical value of the wave numbera* moves to
zero and, as a result, the region of the long wave instability
shrinks. The phase velocity of the hydrodynamic wave tends
to diminish. The salient features of the surfactant influence
on the hydrodynamic instability mode which follow from
solutions of Eq.(44) agree with the results of Lin[8].

Results for the caseG=const and Ma,0 have been ob-
tained. As seen in Fig. 2 there are three unstable modes ac-
cording to the values ofa, which can be identified by their
phase velocities. The growth rate of the diffusion mode(2)
with phase velocityCr =1.5 does not appreciably vary when
we change from Ma=1.5 to Ma=−1.5. There is a second
particular diffusion mode(3) on the finite interval wave
numbers whose phase velocity varies linearly in the vicinity
of the pointCr =1 anda=0.5. The third branch of solutions
(1) begins ata=0 as a hydrodynamic instability mode with
phase velocityCr =3, but then converts into a mode of ex-
plosive growth asa tends to the critical valueak, i.e., avi
→` asa→ak.

Let us show that the appearance of an explosive growing
mode is genuine of film flows for the caseG=const and

FIG. 1. (a) Phase velocityCr and (b) growth ratef =mavi, as
functions of the wave numbera for constant surface excess con-
centrationG. Bi=10, g=29.4, G=1.333103, Pe=0.663106, Re
=13.33,D1=10−3, c̄0=−0.25; Ma=0(0), 0.015(1,2), 1.5 (3,4); m
=1 for (0,1,3), 10 for (2,4).
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Ma,0. By setting to zero the coefficient ofj3 in Eq. (44) we
obtain

F12C31 + zF22F31 = 0. s52d

Using Eq.(18), from Eq. (52) follows

ak
2 = 4

2 + c̄0

c̄0

Bi

n*
2G

1

Ma
. s53d

For the values given to the dimensionless parameters in
Fig. 2, Eq.(53) becomes

ak
2 = −

0.385

Ma
s54d

and Eq.(54) givesak<0.507. For the values in Fig. 3, Eq.
(53) givesak=5.07. Let us introduce the smallness parameter
«1, so thatv=«1

−1V, «1!1, anduVu=os1d. Then from Eqs.
(40) follows that

h̃ = «1
2ȟ, sG̃,w̃d = «1sǦ,w̌d, c̃ = ~, ǔ = ŭ, s55d

where all quantitiesȟ, Ǧ, w̌, ǔ, and~ have the same order.
Neglecting termsos«1

2d, from the first equation(40) we ob-
tain

ǔ + 1
4iMa a~ = 0. s56d

The unstable mode actually represents a longitudinal or
dilational wave since surface deformations are negligible as
it is clear from Eq.(55). The disturbancesu8 andc8 are phase
shifted byw=p /2 as it follows from Eq.(56). They can be
expressed in the following way:

c8 = ucuexpfix1g, u8 =
1

4
auMa cuexpFiSx1 −

p

2
DG ,

x1 = asx − vtd. s57d

As Eq. (57) shows the longitudinal oscillationsu8 carry
surfactant away from the points wherec8 is minimal and
bring it to the points wherec8 is maximal. Some sort of
resonance takes place. Unbounded solutions appear at the
critical wave numberak, defined by Eq.(53). When Ma,0
and uMau is small enough the critical wave numberak of the
explosive mode is outside the interval for hydrodynamic
mode instabilitysak.a*d. WhenuMau grows,ak approaches
a* (Figs. 2 and 3).

A transformation of the transverse hydrodynamic instabil-
ity wave into the longitudinal Marangoni-driven wave under
resonant conditions asa grows in Figs. 2 and 3 could be
seen. The phase velocityCr and growth rateavi increase
with a approachingak so that the conditionuvu@1 is gradu-
ally attained. By virtue of Eq.(55) the amplitude of the film

thickness oscillationsh̃ diminishes and resonant conditions
(56) and (57) for the wave under consideration occur. Such
eigensolutions of Eq.(44) are a form of combined modes. A
resonant interaction based on a frequency coalescence point
for (transverse) capillary and(longitudinal) dilational Ma-
rangoni modes for insoluble surfactants has been described
by Rednikovet al. [32,36]. This singular behavior for the
growing coefficient sets limitations to the validity of the
model G=const that, as earlier mentioned, is a somewhat
artificial case. Accordingly, we proceed to examine the more
realistic case,GÞconst for Ma,0.

B. Soluble surfactant transfer accompanied by adsorption-
desorption processes

Taking now adsorption and desorption into account we
return to investigate the general case of the film flow with
surfactant. It is worth noting that the method used leading to
Eqs. (38) and then to the dispersion equation(44) is highly
efficient for largeg values and for small Ca values. Accord-
ing to Eq.(19) the crucial parametern* is small for small Ca
values. For waterg=2850 while g=29.241 for a liquid
metal, and Ca=0.0024 instead of Ca=0.2 in the discussed
case. For our numerical study the following parameter values
have been used:

g = 2904, d = 0.412, n* = 0.193.

These values fit well a water film flow with a soluble volatile
surfactant. We shall sequentially consider the two earlier
mentioned surface tension equations of state,s=ssc̄d and
s=ssGd.

Case (i): s=ssc̄d. For this case the coefficientsF3k and
C3k of the dispersion equation(44) are obtained using Eq.

FIG. 2. Ma=−1.5s1,2,3d; m=1 for (1), 102 for (2,3). Other
parameters as in Fig. 1.

FIG. 3. Ma=−0.015s1,2,3,4d; m=1 for (1,4), 10 for (2), 10−1

for (3). Other parameters as in Fig. 1.
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(45). The parameterT in Eq. (45) estimates the role of
adsorption-desorption kinetics on the hydrodynamic instabil-
ity. For finite values ofT the mass rate transfer of the ad-
sorbed surfactant concentrationG by convective flow is of
the same order as that by desorption inside the liquid bulk.
From the dispersion equation(44) we obtain four eigenval-
uesjk= ū0−vk with corresponding rates for growing or de-
caying modes. The salient features of film flow instability
obtained in numerical experiments with aqueous solutions
for various Ma,T, anda values are depicted in Figs. 4–9.
Results were obtained for positivesMa.0d as well as for
negativesMa,0d Marangoni numbers with soluble surfac-
tants.

For every value of the Marangoni number, one hydrody-
namic instability(Kapitza) mode exists together with one to
three growing, unstable diffusion(Marangoni) modes. For
Ma=1 in addition to the hydrodynamic mode(1), only one
diffusion mode(2) with a** <1 on Fig. 4 could be seen.
Note that on the wave number intervala** ,a,10 the dif-
fusion modes have a growth rate of the same order than the
hydrodynamic mode. Figure 4 shows, for small negative Ma-
rangoni numbers(e.g., Ma=−1), three unstable modes,
namely, the hydrodynamic mode(3) and two diffusion
modes(4,5). The influence of the Marangoni effect on hy-

drodynamic waves is rather weak for this value of the Ma-
rangoni number. The curvesCrsad andavisad are practically
the same for Ma=0 and Ma= ±1. A pair of diffusion modes
exists in the intervala.a** sa** <4d. For one of them the
wave phase velocity is slightly above the valueCr =1.5,
while for the other(2,3) it is slightly below this value and
both are growing.

A drastic modification of the instability curvesCrsad and
avisad with increasing(absolute) values of the Marangoni
number is shown in Fig. 5. New instability modes for Ma
=−10 andT=1.0 are observed. There exists a slow diffusion
mode (2) at a.a** sa** <1d which moves with the liquid
on the film surfacesCr =1.5d. Its growth rateavi is about
that of the similar mode(2) in Fig. 4. Another diffusion
mode(3) appears ata.an san<1.5d which has very differ-
ent nature. The corresponding disturbances represent fast
waves with phase velocityCrsad linearly growing whena
increases. For example, the phase velocity varies fromCr
<2 to Cr <8 asa increases froma=2 to a=10. The growth
rate of the fast diffusion mode(3) is about one order higher
than that of the slow diffusion mode(2).

The salient effect of the Marangoni number on the insta-
bility of film flow in Fig. 5 is the appearance of a strong

FIG. 7. (a) Phase velocityCr and (b) growth ratef =mavi as
function of the wave numbera for adsorption-desorption controlled
surfactant transfer withs=ssGd. Bi=10, g=2904, G=2000, Pe
=106, Re=32, D1=10−2, c̄0=−0.25; T=5: Ma=1 (1,2), Ma=−1
(3,4,5); m=1 for (1,3), 10 for (4), 102 for (2), 10−1 for (5).

FIG. 4. (a) Phase velocityCr and (b) growth ratef =mavi as
function of the wave numbera for adsorption-desorption controlled
surfactant transfer withs=ssc̄d. Bi=10, g=2904, G=2000, Pe
=106, Re=32, D1=10−2, c̄0=−0.25; T=5: Ma=1 (1,2); Ma=−1
(3,4,5); m=1 for (1–5).

FIG. 5. Ma=−10,T=1.0 (1,2,3); m=10−2 for (1), 1 for (2,3).
Other parameters as in Fig. 4.

FIG. 6. Ma=0 (0); Ma=10, T=0.5 (1,2,3); m=1 for (0,1,2,3).
Other parameters as in Fig. 4.
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combined hydrodynamic-diffusion (Kapitza-Marangoni)
mode(1) with growth rate two orders higher relative to the
case of low Ma values. This strong combined mode begins at
a=0 as an ordinary hydrodynamic mode with phase velocity
Cr =3 and then diminishes toCr <2 asa grows toa<1.5.
But then instead of growing,Cr falls down toCr <1.5 with
subsequent asymptotic behaviorCr →1.5 for a growing as it
occurs for the diffusion mode. Such transverse hydrody-
namic wave gets over to a longitudinal wave due touvu@1
as shown above. In the vicinity ofa<1.5 this instability
mode exhibits features of both transverse and longitudinal
waves. A jump fromT=1 to T=0.5 does not appreciably
change the picture of instability modes. Transverse and lon-
gitudinal waves for a horizontal initially resting film in the
presence of an adsorption barrier were discussed by Hennen-
berget al. [20].

In Fig. 6 the curvesCrsad andavisad from eigensolutions
of Eq. (44) for Ma=10 andT=0.5 are shown. Three insta-
bility modes can be distinguished noting their phase velocity.
The first two modes were discussed for negative values of
the Marangoni number, namely, a hydrodynamic mode(1)
with phase velocity 3.Cr .2 in the interval 0,a,a* and
a diffusion mode(2) with phase velocityCr <1.5 in the in-
terval a.a** . A strong damping effect of the Marangoni
number Ma.0 on the hydrodynamic waves(0) is shown in
Fig. 6. The maximum growth rate is equal to one-half and
the boundary value of the wave numbera* is one-third of the

corresponding value for Ma=0. Accordingly, the Marangoni
effect generates the diffusion mode which exists fora.a**
sa** <0.7d and for which the growth rateavi is the same
order as that of the hydrodynamic mode. It should be noted
that for Ma.0 the hydrodynamic and the diffusion modes
do not interact to form a combined mode at variance with the
earlier discussed case for Ma,0.

The third unstable mode(3) at a.an in Fig. 6 is unusual
because its phase velocity is negative. Accordingly, the cor-
responding wave moves upstream. These waves have short
lengthssan<8.5d, are fast movingsuCru.5d, and grow fast
[avi is of the same order as for the hydrodynamic mode(1)].
As uvu@1 these waves are longitudinal ones in accordance
with results described earlier.

The fast surface waves ata.an deserve to be discussed
in more details. From the dispersion equation(44), to order
os1/a2d we obtain

v −
3

2
= ab + A0 + A1

1

a
, b = ± Îu, u =

1

5d
. s58d

For the purely hydrodynamic instability case, Ma=0, the co-
efficientsA0 andA1 are

A0 = −
3

10
, A1 = −

3

25

1

b
−

1

2
ui . s59d

Relations(58) and(59) determine two waves moving up and
down the main flow with corresponding phase velocitiesCr

= 3
2 +ab. These waves are slightly damped sincevi

=−1
2u,0.
The inclusion of the Marangoni effect in the dispersion

equation(44) makes these fast waves to grow. For MaÞ0,
we obtain from Eq.(44) A0=Ar + iAi, where sgnAi =sgnN,

N = − n*bMaST
2 + c̄0

c̄0

−
G1

B1
DST −

G1

B1
Ds1 + c̄0d.

Two waves determined by the eigenvalues(58) now will
grow if Ai .0, sincevi =Ai +os1/ad. For all cases in Figs.
5–9 the instability conditionAi .0 is fulfilled if bMa,0.
Thus we have a fast upstream growing wave when Ma.0
andb=−Îu, while it is a downstream wave with Ma,0 and
b= +Îu.

The resonance mechanism of amplification is seen from
Eq. (57) derived foruvu@1. According to Eq.(57) the veloc-
ity perturbationu8 changes the concentrationc8 by transfer-
ring surfactant from points of minimalc8 values to points of
maximalc8 values. Then the perturbations of surfactant con-
centration amplify the velocity perturbation thanks to the
Marangoni effect. Thus the fast wave disturbances are sur-
face longitudinal convective-concentration waves accompa-
nied by very small liquid surface deformations. The wave-
length correlates with the smallest of the two characteristic
lengths, diffusion boundary layer thicknessh1, and film
thicknessh. Wave numbersā based onh1 are one order of
magnitude lower, namelyā<1 instead ofa<10 because
h<0,1h1, as noted earlier.

Case (ii): s=ssGd. Let us examine now the role of the
functional relations=ssGd for the surface tension. Instead

FIG. 8. Ma=−10,T=0.5 (1,2,3); m=1 for (1), 102 for (2,3).
Other parameters as in Fig. 7.

FIG. 9. Ma=10:T=1 (1,2,5), T=0 (3,4,5); m=1 for (1,3,5), 10
for (2,4). Other parameters as in Fig. 7.
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of zc̃ we must havez1G̃ in the amplitude equations(38) with

z1 = n*Mab,M1 = −
ds

dG

G*

mU*
. s60d

For the coefficientsF3k in Eq. (43) we obtain from Eq.
(40) the following expressions:

F30 = bh1 − B1G1 − TfB1
2 + M1s1 + c̄0da2gjs1 + c̄0d,

F31 = SG1

B1
−

2 + c̄0

c̄0

TDs1 + c̄0da2, F32 = 0. s61d

Equation (44), with coefficientsF3k from Eq. (61) and
C3k from Eq. (45), determines four eigenvaluesv. The pic-
ture of instabilities for the cases=ssGd resembles that for
s=ssc̄d though less diverse. In Fig. 7, for low Ma(absolute)
values(Ma= ±1, T=5) two instability modes could be seen
for Ma=1; namely, a hydrodynamic mode(1) and the diffu-
sion mode(2) with phase velocityCr <1.5. There are three
instability modes(3,4,5) for Ma=−1. This picture is essen-
tially the same as that of Fig. 4, but there are two differences:
on the one hand, the stabilizing effect of the negative Ma-
rangoni number, Ma,0, on the diffusion mode(4) is stron-
ger, and, on the other hand, the only slow diffusion mode(2)
at Ma.0 exists on the finite intervala.

In Fig. 8 the curvesCrsad and avisad for Ma=−10 and
T=0.5 are shown. We see a combined hydrodynamic-
Marangoni-driven mode(1) at aù0. Near the beginning of
the curve, the phase velocity changes fromCr <3 ata=0, as
it must be for a hydrodynamic mode, then diminishes and
tends toCr =1.5 with a growing as for the base diffusion
mode. The growth rate of this combined mode monotonically
grows with a increasing and reaches the high value of
savid=30 at a=8. It could be compared withsavid=20 in
Fig. 5, for the cases=ssc̄d. According to results earlier
given the disturbances defining this combined mode are long
transverse waves for smalla and for higha short longitudi-
nal waves moving with the liquid on the film surface. The
second instability mode(2) is represented by the fast short
length waves ata.an san<4d. The corresponding fast
wave mode(3) in Fig. 5 for the other surface tension model
is shown for wave numbersanù1.5. The third mode(3) in
Fig. 8 is the Marangoni-driven slow diffusion mode with
phase velocityCr <1.5.

The numerical results for positive values of the Ma-
rangoni number(Ma=10, T=0,1) are shown in Fig. 9. We
see the hydrodynamic modes(1,3) which are attenuated to a
large degree by the Marangoni effect. The maximal value of
its growth ratesavidm=0.095 is less than half that for Ma
=0. Accordingly, the short length diffusion mode(4) is very
weak with savidm<0.016 for a=9. It could be compared
with savid=0.025 in Fig. 6 for a solutal system withs
=ssc̄d. Note the absolutely unstable wave(5) with negative
phase velocity shown in Fig. 9 for the cases=ssGd with T
=0,1.

VI. SUMMARY AND CONCLUSIONS

The linear stability analysis of a falling film flow of an
aqueous surfactant solution endowed with mass transfer and
surfactant adsorption-desorption processes has been investi-
gated. Hence we have dealt with a two-phase, three-
component system liquid-air where mass transfer of a vola-
tile surfactant occurs through the interface from the liquid
into gas. Changes of the solute component concentration
along the interface induce changes of the surface tension and,
eventually, generate surface stresses(Marangoni effect) lead-
ing to interfacial instability and flow changes. Two model
equations relating the surface tensions to the surfactant con-
centrationsssc̄d and ssGd have been examined. The math-
ematical formulation of the interaction of the mass transfer
process with hydrodynamics includes the Navier-Stokes and
Fick diffusion equations together with the equations for the
adsorption-desorption kinetics on the film surface. The non-
dimensional form of the corresponding nonlinear boundary
value problem contains nine independent parameters, includ-
ing Reynolds sRed, Marangoni sMad, Peclet sPed, Weber
(We), and Biot(Bi) numbers, excess of surfactant concentra-
tion in a sublayersGd, local surfactant concentration on the
film surfacesc̄od co-efficient for desorption intensitysTd, and
surface diffusionsD1d. An approximate nonlinear system of
the Galerkin type not containing coordinates normal to the
interface was derived. In the linear approximation the model
equations have been used for systematic computations of ei-
genvalues. The full Navier-Stokes formulation has also been
used for cross-checking methodology and accuracy esti-
mates.

For Ma=0 hence in the absence of Marangoni stress with,
however, mass diffusion included, there exists only one hy-
drodynamic mode in the finite interval of wave number val-
ues 0øaøa0. This is the Kapitza mode. Thus, the mass
transfer process alone does not significantly influence the
flow of an aqueous solution. Inclusion of MaÞ0 in the dis-
persion equation results in damping of hydrodynamically un-
stable waves and in the appearance of new Marangoni-driven
(diffusion) modes. Contrary to the hydrodynamic long wave,
the diffusion waves obey the conditiona.a** and must be
considered as short relative to the other one. A lower cutoff
a** has been determined by numerical calculations, while an
upper one is not formally considered in our mathematical
model. All Marangoni-driven modes could be classified ac-
cording to their phase velocityCr. For every positive value
of the Marangoni number, Ma.0, there exists a slow mode
which has phase velocityCr <1.5. In the coordinate system
moving with the liquid on the film surface these waves are
practically stationary. This mode can be considered weak,
because its growth rateavi is two orders of magnitude lower
than the corresponding growth rate of the hydrodynamic
mode. For negative values of the Marangoni number,
Ma,0, there exist two additional modes. One of them ap-
proaches the hydrodynamic mode asuMau grows and a com-
bined (Kapitza-Marangoni) mode appears. The correspond-
ing eigenvalues exist for wave numbersaù0. This mode
begins as a transverse hydrodynamic long wave with phase
velocity Cr =3 ata=0, then asa increases transforms into a
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longitudinal Marangoni-driven short wave with phase veloc-
ity Cr <1.5. The main property of the combined mode is its
very high growth rate which is two orders of magnitude
higher than that of the slow diffusion mode. The third type of
Marangoni-driven instability is a fast wave diffusion mode.
Its corresponding phase velocity is positive and grows asa
increases to valuesCr <10 in the interval of wave numbers
an,a,10. For the fourth diffusion modesMa.0,a.and
the phase velocity is negative. These short length upstream
moving waves could generate absolute instability. All four
types of instability modes arising from the influence of the
Marangoni effect appear for both surface tension models,
ssc̄d andssGd, but their corresponding Ma andT values are
different.

The role of two surfactant transfer kinetics has been stud-
ied. The first is the model with the adsorbed surface excess
concentration artificially set constant, but with diffusion
taken into account. The second is the more complete model
with an adsorption-desorption barrier, with surfactant diffu-
sion to the bulk liquid and desorption to the adjacent gas or
air. Numerical results for both models show significant dif-
ferences on the eigenvalues and their corresponding instabil-

ity behavior. Only for low positive values of the Marangoni
number, Ma.0, both models provide about the same results.
The more complete model is better suited to obtain results
amenable to experimental observation. The change from one
to the other of the surface tension equations of state with
surfactant concentration has weak effect on the instability
picture and the results of numerical computations of eigen-
values are about the same.
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